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Synopsis
The Gram-Charlier series was suggested as an empirical instrument spreading function

in the first paper (part I) of this series. In the second paper (part II) of this series, the
Fourier transform method was used together with the suggested series to solve Tung’s
integral equation. In this paper, an alternate method for solving Tung’s equation is pro-
posed which eliminates some of the limitations of the Fourier transform method. In the
approach used in this study, Tung’s integral equation is approximated by a set of linear
equations. Since no unique least-squares solution can be computed, a closely related
problem whose solution closely approximates the original problem is formulated and
solved using singular value decomposition. By avoiding the use of the smallest singular
values and forcing the equality of the areas of the corrected and the uncorrected chro-
matograms, an approximate solution to the original problem is obtained in which the os-
cillations inherently present due to the ill-posed nature of the problem are filtered out.
The performance of t,he method with the experiment,al  dat,a  given in Part, II is indicat)ed.

INTRODUCTION

In the first paper (part I) of this series,’ the Gram-Charlier series was sug-
gested as an empirical instrument spreading function and used in conjunc-
tion with a linear calibration curve to find an analytical solution to Tung’s
equation by the method of molecular weight averages. The corrected
number- and weight-average molecular weights obtained from the analytical
solution were used in conjunction with the hydrodynamic volume concept
to obtain a calibration curve corrected for instrument, spreading. The cor-
rected calibration curve was used along with t,he  raw chromatogram to ob-
tain the corrected differential molecular weight distribution curve.

In the second paper (part II) of this series,2  this function was used in
Tung’s equation to correct the raw retention volume ohromatogram, F(v),
to a corrected chromat)ogram,  W(v). From W(v), true number- and weight-
average molecular weights could be c:alculat,ed.  Tung’s equation was
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solved by the Fourier transform method, and a nonlinear calibrat’ion  curve,
the form of which was suggested by Yau and RIalone,3  was used.

The Fourier transform method, though relatively fast and small in com-
puter storage requirements, had two major problems. The first problem
was the inconsistent manner in which the volume dependence of the instru-
mental spreading function, G(v  - y), was taken into account. Although
G(v - y) is a function of volume, the procedure assumed it to be indepen-
dent of volume for ease of mathematical manipulation during the trans-
formations between volume and frequency (k) space, but then used the
functional dependence of G(v  - y) on v in the evaluation of the transformed
instrument spreading function G(k). The second problem occurred when
using the method on actual experimental data. Due to the generation of a
slowly undulating oscillations in k space, there was considerable doubt as to
how far in k space F(k) should be generated. If k,,,  values (the largest
value of k at which F(k) is determined) were too small, information would be
lost. If k,,, values were too large, spurious information would be intro-
duced. In part II, k,,, was estimated semiempirically.

In order to avoid these difficulties, Tung’s integral equation is approxi-
mated by a set of linear algebraic equations. A closely related problem is
then formulated and solved using singular value decomposition in order to
avoid the oscillations introduced due to the ill-posed mathematical nature
of the problem. The use of singular value decomposition in the solution of
integral equations was suggested by Golub and Kahan*  and applied by Han-
son.5

The method here may be considered a minimization method as classified
by Tung.‘j As expected, it suffers from relatively large computer storage
requirements and long computation time. However, it overcomes the dif-
ficulties encountered in t,he  Fourier transform method.

TUNG’S INTEGRAL EQUATION

Tung’s equation has the form of a convolution integral equation and re-
lates the normalized raw retention volume chromatogram, F(v), to the cor-
rected normalized retention volume chromatogram, W(y), and the instru-
ment spreading function G(v  - y) by means of the following equation:

-F(v) = s G(v - Y)W(YMY.-m

The instrument spreading function indicated in part II is

G(v - y )  =  ___ (v - Y>”_ _-- ---~-
2PZ 1

[3f] +  +; Hq  [‘$I},  ( 2 )
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where Aa  and A4  are skewing and flatness parameters defined by the equa-
tions

ad H,  [(v  - y>ld-1pL2  are the Hermite polynomials as defined in Table I.
The parameters cc?,  ~3,  and ,.Q  are in general a function of the volume y. A s
pointed out by Vladimiroff’ t,he  p values in eq. (2) were incorrectly8 con-
sidered as a function of v in part II.

TABLE I
Hermite  Polynomials

H,(x) = 1
H,(x) = x
H,(x) = x2  - 1
H3(x)  = x3  - 3x
Ha(x)  = x4  - 6x2  +  3

As indicated by Tung,6  the integral in eq. (1) may be approximated using
m data points of the raw chromatogram by a set of simultaneous linear alge-
braic equations of the following form:

n-1
F(vi) = j~lG(v+ - YAW(YAAY, i = 1, 2, . m. (5)

If n - 1 increments of Ay are used together with the trapezoidal rule, eq.
(5) becomes

Wi)  =  y [G(vi  - ydW(yd  +  2G(v, - ydW(y2)

Rearranging yields

+ . . .G(v,  - yJW(y,)  1 i = 1,2 . . . m. 03

-‘Cd
WV,  - ydW(yd  + 2G(vi  - yz>W(yd  +  .  .G(vz  - y,>W(y,)  =  F

i  = 1,2 , _.. m. (7)

Since the coefficients G(v - y) are known, this represents m equations in n
unknowns. When the G(v  - y) function is evaluated for use in eq. (5),
the variation of p2,  ~3,  and ~4 with y may be included. Generally, m is
selected to be greater than n, and an attempt is made to solve eq. (7) in a
least-squares sense. The value selected for n depends on the accuracy and
smoothness of the W(y) function desired. Generally, about 10 points per
count is adequate. The range of W(y) is taken to be the same as that of
F(v).
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PROBLEM DEFINITION

As pointed out by Duerksen,g  previous workers who have attempted the
solution to eq. (1) by approximating the integral with a set of linear equa-
tions have all encountered great difficulty in solution due to ill-conditioning
of the resulting matrix. Hanson and Lawson’0  discuss linear least-squares
problems in considerable detail and show how singular value decomposition
can be used to generate the singular values of the matrix which can then be
used for analysis.

Upon letting A be the m X n matrix arising from eq. (7), X be the desired
solution vector W(y), and B be the right-hand side vector of eq. (7) there
results

AX = B. (8)
Generally, there will be more data points than points at which a solution

is desired. Thus, m>n. If the rank of A is equal to n, then there is a
unique solution. However, if the rank of A is less than n, t,hen the solution
is not unique and an additional criterion is needed to make it unique. This
additional criterion is generally taken as the minimum length solution
which then can be found from the pseudoinverse of A.

From a practical point of view, however, this procedure requires a defini-
tion of which of the singular values are zero and which are not. This is a
very difficult task, indeed, especially when there are many small closely
spaced singular values. As a result, some additional criterion is needed to

TABLE II
Relationshipsa  Between t,he Moments About. the Mean (p)  of F(u) and W(v)

Moment, Relationship

Zero
First

area of unnormalized  W(v)  = area of unnormalined F(u)
mean of W(u) = mean of F(u)

S
c c

Secondb mn* = m2  - P?(Y)W(Y)dY
--m

Third m3*  = m3  -
s

m
/dY)W(Y)4/  - 3

--m s

m
/dY)Y~V(YM/

-m

+ 3P
J

PdY  )W(Y)dY
-mm

Fourth ma*  = m4  -S rr(~)W(~)dy - 6
-cc S

m
PdY)?PW(Y)~?/

-m

+ m.4 J PZ(Y)YW(Y)~Y  - W
J

dY)W(YMY
-m -cc

S
m

*Note:  p,(y) = (ZJ  - y)“G(v  - y)du,  n = 2,3,4.
-m

h m;*  refers t.o  W(v),  mi refers to F(v).
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select a reasonable solution. A choice may be made from a number of theo-
retical relationshlps that exist between F(v) and W(V).

By multiplying both sides of eq. (1) by vn, where n = 0, 1,2,3,4 and inte-
grating over c, there results

s

m m

s s

m
v”F(v)dv  = Vn G(v - Y)~(Y)&&

-a -m -m

n = 0, 1, 2, 3, 4. (9)

Integrating out for each n., the relationships given in Table II result.
When the parameters p2,  ~3,  and I.Q  are constants, the relationships reduce to
those given in part II.

If the trapezoidal rule is used to approximate the equal area constraint,
then (since the normalized area must equal 1) there results

1 = “2” [W(m) + 2W(y,)  + . w&J I

CLOSELY RELATED PROBLEM
The solution of eq. (8) subject to the linear constraints of Table II may be

approached in a number of ways. For example, it may be formulated as a
quadratic programming problem, since in addition to the equality con-
straints it is known that the solution must be everywhere nonnegative:

X i  = W(?J,)  >  0. (11)
Marquardt”  has recently pointed out that when ATA is poorly condi-

tioned (small eigenvalues), then the least-squares solution to eq. (8) does
not necessarily lead to an acceptable solution. He discusses two approaches
to solving this problem and compares their properties: (a) the ridge estima-
tion method of Hoer1 and Kennard and (b) generalized inverse estimators.
Both approaches can be used to develop generally different but adequate
solutions.

In this paper, however, the procedure outlined by Golub12  has been fol-
lowed. We seek to find a solution of minimum length which satisfied the
constraint that

[IAX - Bll  =  a > minimum = least-squares solution. (12)

To do this we seek to minimize a,  where

+ = j1X112  + ; [(B - AX)T(B  - AX) - a”] (13)

and x is a Lagrangian multiplier. The solution will lie on a sum-of-squares
contour, LYE, which in general will be greater than the least-squares solution
which is the low point in the sum-of-squares space. Differentiating with
respect to zi  and setting the derivatives equal to zero results in

(ATA  +  x1)  X  =  ATB. (14)
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If is of interest to note that this is exactly the ridge analysis equation of
Hoer1 and Kennard discussed by Marquardt.ll

Everything in eq. (14) is known, except X. If A were assumed, however,
and ATA  and A TB  were computed, then a linear set of equations would
have to be solved to obtain X. This has two disadvantages, however.
First, the ATA  calculation, especially if A is large, can lead to considerable
errors. Secondly, there is a requirement to save ATA, so extra storage is
needed. To avoid these problems, we take the singular value decomposi-
tion’O  of A:

A = U(mxnAzxn)  VTcnxn). (15)

The matrices U  and V are both orthonormal, and the S matrix is a diag-
onal matrix of scalars which are the singular values of A. (The singular
values of A are the nonnegative square roots of the eigenvalues of ATA.)
Since U  and V are orthonormal.

VTV  = I, (16)

and
UTU  = I,. (17)

Upon substitution of eq. (15) into eq. (14),  there results
(As  + AS-‘)2  = c (1s)

where
2 = VTX (19)

and
C = UTB. (20)

Since the matrices are all diagonal, eq. (18) may be written in component
form as

S&f
zf  = x+ w>

Once Zi  is determined, then the solution from eq. (19) is given by
x = vz. w>

Since the solution vector X obtained in eq. (22) depends on the choice of
A, a value of X is searched for until the solution vector satisfies the con-
straint, eq. (10). The value of X determines the contour & on which the
solution lies.

The procedure to find a solution in the sense of eq. (18) to eq. (8) subject
to eq. (10) can be summarized as  follows:

a . Given m data points, uf and F(v,), from the raw chromatogram, set up
a set of m equations in n.  unknown points W(yj), ,i  = 1,2, . . . n wit,h  m > n,.
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b. Estimate X. When X = 0 a least squares solution is found. When
X + 03  , zi + 0, and the solution 11  XII  goes to 0.

c . Perform a singular value decomposition of A. This gives U,  S, and
v.

d . Calculate z1  from eq. (21) and then X from eq. (22). If any zi < 0,
set xi = 0. Also eliminate any tails by setting them to 0. These some-
time occur at the edges of the chromatogram.

e. See if X satisfies eq. (10). If it does, the procedure is completed.
If not, reestimate X and return to step d.

The final result yields X and the value of X.

RESULTS

Analytical Data

In order to test the above procedures, a function suggested by TungL3  and
studied in part II was used:

F(v) =
0.325H (0.32$*H2(v  - 25)2

-&[(0.325)2 + ~25 (0.325)' + Hz 1
+ 0.4 exp

(0.325)2H2(v  - 31)2
-

(0.325)z  + Hz II (23)

where

012

0.10
I-

2

F#
,008

Ei

!L!oos

ii

0”z 0.04

0 02

I .oo

12 00 2000 28 00 36.00 4 4.00

(24)

COUNTS

Fig. 1. Test function H = 0.8: (-) F(v); (-U--)  W(u);  (-A-) theory W(v).
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COUNTS

Fig.  2.  Test function H = 0 .4:  (-) F(v); (-•-) W(v); (-A-) theory W(v).

The corrected chromatogram is

0.6 exp [ - (0.325)2(~  - 25)2]

-I- 0.4 exp[- (0.325)2(v  - 31)2 1). (25)
F(v) was generated over the range 14 < v 5 42 with Au = 0.1. Due to

storage limitations, however, when more than 99 points were available, 99

Statistic

TABLE III
Results for Analytical Test Function Eq. (23)

H  =  0 . 8 H = 0.6 H = 0.4

&nax 0.694375x10’
Smin 0.144872 x 1O-6
Rows of A 99
Columns of A 99
x O.316594x1O-2
Area, F(v) 0.99999x100
Area, W(v) 0.99994x100
Mean, F(v) 0.27400X102
Mean, W(v) 0.27400X102
m,  F(v) O.l41<55XlO~
m2+,  theory 0.13373X102
m2*,  W(v) 0.13376X10”
m3,  F(v) 0.10369x102
m3*, theory 0.10369x102
ma*,  W(v) 0.10371x10~
m, F(v) 0.46418X103
m4*,  theory 0.39960X lo3
ma*,  W(v) 0.39939x10a
Time, set 133

0.692089x10’
0.286682 x 1O-7

!)Y
9 9

0.172493X 10-2
0.99999XlO~
0.99994x100
0.27400X102
0.27400X102
0.14762X102
0.13373X10”
0.13377X102
0.10373x10~
0.10369x10*
0.10369x10*
0.51677x103
0.39960X lo3
0.3981*~510~

1 1 7

0.685971x10’
O.5O6216X1O-7

9 9
9 9

0.369109x10-’
0.99995XlO~
0.99991x100
0.27400x102
0.27399x102
0.16491X102
0.13373X10”
0.13453x102
0.10382 X lo2
0.10369x102
0.10381x102
0.67792X103
0.39960X lo3
0.40028X103

1o;i
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equally spaced points in y were computed by interpolation. PorH = 0.4,0.6
and H = 0.8, the results are shown in Table III. Figures 1 and 2 are plots
for the cases H = 0.8 and H = 0.4. The theoretical relationships between
the moments indicated in Table II are also shown in Table III. (Note,
however, p values are not functions of volume.) The times, in seconds, are
for an IBM 360/65 computer under MVT. The singular value decomposi-
tion was carried out in single precision using the code of Golub and Reinsch14
as translated into FORTRAN by Hanson. (R. J. Hanson kindly supplied a
copy of the routine.)

As H goes from 0.S  down to 0.4 (~2 = 0.782 to pL = 3.12),  it is evident from
Table III and the plots that there is somewhat of a degradation in the
answers. As H decreases, the largest singular value (.s),,,~~  remains essen-
tially the same, but the smallest singular value (smin)  decreases considerably.
This increasing ill-conditioning appears to limit the accuracy of the numeri-
cal results obtained.

Experimental Data

The instrumental spreading correction procedure was tested on t,he  same
experimental data as reported in part II. Table IV gives the values de-
rived in part II for the variation of pLs, p3,  and p4 with volume. In addition,
the parameters of the Yau-Malone calibration curve used are also given.

Table V gives the results of the five test samples, and Figures 3 to 7 give
the corresponding plots. Note that the values of Smin  given in Table IV
are above the value of SInin  (about Smi,  = lo-‘) at which numerical problems
may begin to be encountered as indicated in the tests of the analytical
function.

24 00 1

COUNTS

Fig. 3. Uncorrected and corrected chromatogram for sample 181-186: (-) F(v);
(-u-) w (0).
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2tx 32.00.

s
I-z 24.00.

ii
I 1 6 . 0 0 .

ki
I;: 6.00.

2

0.00
24.00 26.00 32.00 36.00

COUNTS

Fig. 4. Uncorrected and corrected chromatogram for sample 196-302-l: (-) F(v);
( - • - )  W(v).

TABLE IV
Calibration Values for Polystyrene Samples

Volume
(5 ml/count)

2 3 0.825 0 . 9 7 0 19.1
2 4 0.950 0 . 6 9 5 19.0
2 3 1.0-i 0.270 1 7 . 1
2 6 1.0.; 0.160 13.2
2 7 0.927 0.047 8.1.5
2s 0. 730 0.00 4 .z
2 9 0.593 0.0145 2.22
3 0 0.465 0 . 0 3 4 6 1.15
3 1 0.397 -0 .0750 0.706
3 2 0.370 -0 .213 0 550.  .
3s 0.425 -0 .500 0.630
8 4 0.510 -0 .890 0.8.59
3 3 0 i 50* . - 1 . 1 8 0.966
3 6 0.595 -1.32 1.10
3 7 0. 330 - 1 . 6 3 1.01

Yau Malone Curve

u =A+B *+ [l - exp(-$*)I  + erfc  (+L)
I

ti  = !t;

Values of Yau-Malone Parameters
A = 20.154
B = 22.645 -
c = 19.337
D = 0.27977
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26.00 30.00 32.00 34.00 36.00

COUNTS

Fig. 5.  Uncorrected and corrected chromatogram for sample lY6-351:  (-) F(v);
(--o-) W(v).

26.00 30.00 32.00 34.00 36.00

COUNTS

Fig. 6. Uncorrected and corrected chromatogram for sanple 196-806-l; (-) F(v);
( - - a - )  W(v).

Some discrepancies appear in the P( c=)  values between Table V and
Table VIII of part II. This is due to the fact that smoothing was per-
formed on the data in part II at the edges of the chromatogram, while in
this study no smoothing was performed.

A study of the results of the statistical calculations given in Table V indi-
cates that the calculated chromatogram, W(v), is consistently too ‘(broad,”
i.e., m2*  and m4*  calculated from W(v)  are always too large when comparedto
the calculated values obtained from the equations of Table II. This may
be due to the sensitivity of the calculation of the moments to the mean.
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16.00

COUNTS

Fig. 7. Uncorrected and corrected chromatogram for sample 196-308-l: (-) F(v);
(-•-) W(v).

Attempting to match means or second moments by means of the relation-
ships of Table II met with no better success than the area matching.

The reason for the differences between the calculated and measured
molecular weights is not clear. It is suggested that this may be due to a
shift in the calibration curve over the extended period of time that the data
were taken.

DISCUSSION OF RESULTS

From the studies conducted in this paper and those in part II,2  some com-
parisons can be drawn between the Fourier transform method and methods
which approximate Tung’s integral equation by a set of linear equations.

As indicated in part II,2  the major computational difficulty with the
Fourier transform method was that it was difficult to know how far out in
k space F(k) should be generated. Smoothing F(v)  at the edges seemed to
have little effect on damping the oscillations of F(k). Experiments in
which the value of I?,,, was varied to match the areas of F(v)  and W(v)
were not successful. Recently, Vladimiroff,15  in suggesting the use of the
fast Fourier transform, indicated that mathematical filtration and smooth-
ing operations can be performed on the transform of the experimental
chromatogram. He did not apply his method to experimental data, how-
ever.

With these facts in mind the two methods might be compared in the fol-
lowing ways :

Constancy of G(v  - y)

In the Fourier transform method, G(v  - y)  is assumed independent of
volume during the transformations between v and k space, but its depen-
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Fig. 8. Comparison of uncorrected chromatogram with corrected chromatograms
obtained from linear equation method and Fourier transform method for sample 196-
302-1:  (-)  F(u);  (-•o-) W(v ) from linear equation method; (- - -) W(v) from Fourier
transform method.
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Fig. 9. Comparison of uncorrected chromatogram with corrected chromatograms
obtained. from linear equation method and Fourier transform method for sample 196306
1: (-) F(v); (-•O--) W(v) from linear equation metho;;  (- - -) W(v) from Fourier
transform method.

dence  on volume is considered when G(L)  is evaluated. In the linear equa-
tion method, this inconsistent treatment is not required. VladimirofP5
and Tung,13.  however, have suggested that this may not be important, es-
pecially if G(v  - y)  is just a very weak function of volume. Some insight
into thisproblem can perhaps be gained by an examinationof Figures 8 and 9
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in which the Fourier transform solution from part II2 has been plotted on
Figures 4 and 5. Table IV shows how much pz,  p3,  and ~1~  vary over the
range of these chromatograms. As can be seen, the variation between the
two solutions would not be excessive if the area of the chromatogram ob-
tained from the Fourier transform method is renormalized to that of the ob-
served chromatogram by arbitrarily dividing each data point by the ratio of
the area of the corrected chromatogram obtained from the Fourier trans-
form method to that obtained from the observed chromatogram. Even
then, the Fourier transform method would be useful only for routine correc-
tion of the m%  and mW  averages. For more involved calculat,ions,  such as
using a t.heoretical  polymer chain-branching model in conjunot,ion  with the
corrected chromatograms16*17 or using data obtained from the corrected
chromatogram for the determination of kinetic polymerization param-
eters,‘*-*O  the Fourier transform method of solution would be inadequate
due to slight shifts in peak retention volume to lower retention volumes, as
shown in Figures 8 and 9. The linear equation method of solution would
be preferred because of its accuracy and reliability.

Computer Storage Requirements

If one wishes to obtain a reasonably smooth W(v)  using linear equations,
then about S to 10 points per count should probably be used. In general,
this leads to large computer storage requirements which the Fourier trans-
form method generally avoids. For cruder W(v), about 5 points per count,
the computer storage requirements tend to be more competitive.

Time

The large amount of time required to find the singular values in the linear
equation method generally penalizes the method over the Fourier transform
method. As implemented here and in part II,2  this generally meant that
the linear equation method required 5 to 10 times longer computation time
than the Fourier transform method.

CONCLUSIONS

The most accurate and reliable method for calculating the instrumental
spreading correction appears to be the linear equation method. A number
of methods can probably be used for solution, but they must recognize the
ill-posed nature of the problem. One pays for it, however, in computer time
and storage requirements. If a filtering method for the Fourier transform
method can be devised, however, similar to the one suggested in this paper
for linear equations which resolves the Ic,,, problem, it indeed may be made
more attractive. However, the linear equation method would still be the
preferred method n-here C(v  - y)  is a moderate to strong function of reten-
tion volume.
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Nomenclaturea

m X n matrix whose elements are G(v,  - ?J~); i = 1,2, . . . m; j =
1, 2, . n

the right hand side vector of eq. (7) whose elements are 2F(v,)/Ay,
i = 1, 2, . . m

vector defined by eq. (20)
n X n identity matrix
n X n diagonal matrix of singular values of A. .superscript in AT,  UT  and VT mdrcating  transpose
m X n matrix consisting of n orthonormalized eigenvectors associated

with n largest eigenvalues of AA T.
n X n matrix consisting of the orthonormalized eigenvectors of ATA.
the solution vector of eq. (8) whose elements are W(y&,  j = 1, 2,

.  . n
vector defined by eq. (21)
Euclidean norm equal to dx12 + xZ2  + . . xZ2
jth increment of retention volume
Lagrangian multiplier
function to be minimized

a  Symbols and notation found in the text and not defined here have been previously
described in parts I and II.
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